307

Metric Semantics for the Input/Output Behaviour of
Sequential Programs

Joost N. Kok
University of Utrecht*

Abstract

As in the book Mathematical Theory of Program Correctness by).W. de Bakker we
assign both operational and denotational semantics to a language with while and
one with simultaneous recursion. The main difference is that we use tools from
metric topology instead of order theory.

1 Introduction

The book Mathematical Theory of Program Correctness by J.W. de Bakker ([dB80]) has
become a standard work in the field of the semantics and correctness of sequential
programming. The mathematical basis of this book is order theory. An important role is
played by the following fixed point theorem: continuous functions on a complete partial
ordering have least fixed points. This theorem is applied in fixed point definitions: for
example in the definition of a semantic model for a language with recursive procedures.
This is a typical situation in which functions have more than one fixed point.

In later work of J.W. de Bakker metric topology is used as the main mathematical tool
for semantic theories, for example in [dBZ82] or [dBM88]. The metric equivalent of the
fixed point theorem for continuous functions is Banach’s theorem: a contraction on a
complete metric space has a unique fixed point. This theorem is works very well in
situations where functions have have unique fixed points.

Both fixed point theorems state that the (least) fixed point can be obtained by an itera-
tion procedure. in the first case as the least upperbound of a chain starting in the least
element of the complete partial ordering, in the second case as the limit of a Cauchy
sequence starting from an arbitrary element of the metric space. In both cases each
next element is obtained by applying the funtion to the previous element.

It has been an open question whether we can apply metric theory in non unique
fixed point situations. In this paper we take as a starting point chapters three and
four of Mathematical Theory of Program Correctness and show how we can treat the
semantic theory also in a metric way. The first chapter deals with a language containing

*Department of Computer Science, University of Utrecht, PO. Box 80.089, 3508 TB Utrecht, the
Netherlands.

308

assignment, sequential composition, if statement and while statement. The second
chapter gives semantics to a language in which in addition we have simultaneous
recursion. Our goal is to give to both languages input/output semantics (a function
from the initial state to (if it exists) the final state): an operational one by using transition
systems and denotational with the aid of metric topology. In both cases we derive two
independent characterizations of the denotational semantics:

1. it is the limit of a Cauchy sequence,

2. it is the fixed point with the least distance to the nowhere defined function.

We also study the equivelence between the different semantic models. It turns out that
the proofs of the equivalences are a mixture of the proofs in Mathematical Theory of
Program Correctness and [KR88].

2 While statements

We start by giving the set of statements. The notation (z €)X introduces the set X
with typical element = ranging over X. The set of integers and the set of booleans are
denoted by N and B respectively.

Definition 2.1 Let (b €) BExp, (z,y €) Var, and (s €) Exp be sets. Let (S €) Stat be the set
statements specified by

§ u= z:=s|51;5;|if bthen S else S, fi | while b do S od.
Next we introduce the notion of a state:
Definition 2.2 The set T of states is given by £ = Var — N.

We use the notation o[z := o], with a € N, for a variant of o, i.e., for the state which is
defined by

(ro=al = a ifr=y
olz:= ol = '\y'{ a(y) otherwise

We assume given functions V : Ezp -~ & — Nand W: BEzp - T — B. We now give
the definition of the operational semantics. It is based on a transition system. Here, a
transition is a fourtuple in Stat x £ x (Stat U {E}) x I, written in the notation

(5,0) > (S',0")

or

(5,0) - (E,ol)'

309

The symbol F is called the empty statement and stands for termination. We present a
formal transition system T which consists of axioms (in one of the two forms above)
or rules, in the form

(S1,01) — (51, 91)
(S2,02) — (53,0%)

in which both 5] and §; can be replaced by E. Transitions which are given as axioms

hold by definition. Moreover, a transition which is the consequence of a rule holds
whenever it can be established that its premise holds.

Axioms:
(z:=s,0) = (E, o[z :=V(s)(0)))
(while b do S od,o) — (E,0) if W(b)(o) = f

Rules:

(51,0) =~ (51,97)

(51;510) - (Si;syal)

(while b do S; od, o) — (S]; while b do S od, o’} if W(b)(o) = tt
(if b then S; else S fi,a) — (S1,0') if W(b)(o) =1t

(if b then S else S, fi,0) — (S57,0') if W(b)(o)= f

(51,0) = (E,d")

(81;8,0)— (S,0')

(while b do S; od,0) — (while b do S; od, o) if W(b)(o) = tt
(if b then S, else S fi,0) — (E, o) if W(b)(o) = tt

(if b then S else S, fi,0) — (E,0') if W(b)(o)=f

Let &, = XU {1}, where 1 is a special. From now on, ¢ ranges over ;. We proceed
with the definition of the operational semantics O.

Definition 2.3 The mapping O : Stat — £, — X, is given by

1 o=1

O(S)(o)= { o' (S,0)—"(E,o0")

1 otherwise

The next step is the development of a metric denotational model. We have to assume
that the set £, is countable, ie. £; = {01,02,...}. Ametricd on £, — X, is defined
as follows: Let f,ge X, — X,.

_s] o f(ai)=g(ow)
dha)= ;{ 107 f(07) # 9(a2).
The denotational semantics D : Stat — X; — X, is given in

Definition 2.4

310

i o=1
1. D(z :=s) = Aa.{ oz := V(s)(0)] otherwise

2. D(51;52) = D(S52) 0 D(51)

1 o= 1
3. D(if b then 5, else S5 fi) = Aa.{ D(S1)(0) W(b)(o) = it
D(S2)(0) W(b)(o)=ff

4. D(while b do S od) = lim;_.., ¢; where
¢0 =lo.L
1 o=1
$is1 = Ao.{ (9i0D(S))(a) W(b)(o)=tt
o W(b)(o) = ff
Lemma 2.5 The sequence (¢;); is a Cauchy sequence in £, — %,.
Proof: Follows directly from Vi[¢i(c) = o’ Ao’ # L = ¢iy1(0) = o'},]

Theorem 2.6 Let ¥ : (£, — Z,)—~ (ZL — 51) be defined as follows.

1 o=41
U(F)(o) = Ao.q (FoD(S))(a) W(b)o)=tt
o W(b)(o) = ff.

Let ¢ = D(while b do S od). Then ¢ is the fixed point of ¥ with the smallest distance to
Ao.L.

We continue with the derivation of the equivalence © = D. The mapping & : (Stat —
(Z; = T1)) — (Stat - (£ — E)) is given in

1 o=1
Definition 2.7 O(F)S)o)=4 o (S,0)— (E,d)
F(S') ") (S,0)—(5"0")

An important step in the proof that O = D holds on Stat is the following lemma:
Lemma 2.8
1. ®(D)(S1;52) = D(52) 0 ®(D)(S51)

L o= 1
2. d(D)(if b then S else S, fi) = Aa.{ ®(D)(S1)(o) W(b)(o)=tt
3(D)(S2)(9) W(b)(o) = ff
L o=1

3. &(D)(whilebdo S od) = Ao. { D(while b do S od) o ®(D)(S))(e) W(b)(o) =t
o W(b)(o) = ff.

311

We have the following
Corollary 2.9 D is a fixed point of 3.
The equivalence O = D follows by the following
Theorem 2.10 For all S € Stat, 0,0’ € &
(S,0) =" (E, 0"y & D(S)o)=0d"Ao' # L

Proof:
=
Assume (§,a) =" (E,0’). Using the corollary we have

D=8&(D)=---=&"(D) =
L o=1

Ao.{ o (S,0) =% (E,e"YAk<n
D(S')o’) (S,0)—>"(E,d').

Hence D(S)(o) = o'.
=

We prove the result by induction on the complexity of the statement S. We distinguish
the following cases:

D(S)0) =o' Ad’ # 1 = o’ = olz := V(s)(0)]
and

(z:=8,0) — (E, 0z := V(s)(o)})

2. §=5;5;
D(51;S3)(0) =o' Ao’ # L =
30”[0” = D(51)(0) A o’ = D(S;)(0")] =
30"[(51,0) =* (E,0") A (S2,0") —* (E,0")] =
(81; 52,0) =7 (E, o)

3. § = while b do S od:

D(while bdo S; od)(0)=0'Ac’ £ 1L =

312

(lim ¢:)(o) = oA £ L=
k[de)(o)=0'Ad' £ L] =>

3k[o’ = D(51) 0 ---D(S1)(0) A W(b)(a") = fFA
k

Vi:j < KWB)D(S))o---D(51)(0) = t]A g’ # 1] =

;
301, .., Okl

01 =0 Aoy =D(51)(01)- -+ A oks1 = D(51)(0k) A Oks1 = 0'A

W(b)(0') = ff AVi € {1,...,k}[W(b)(o:) = tt]] =
301, .., Okl

(51,01) = (E,02) A W(b)(a1) = tA

(51,02) =* (E,03) A W(b)(a2) = ttA

(S1,0%) =" (E, 0141) AW(b)(0x) = 1IA
W(b)(ok+1) =] =

(while b do $; od, o) —™ (E, o).

3 Recursion

We now present the syntax for a language with recursion. Again, we use S to range
over the set of statements Stat. The set of statements is extended with a new syntactic
category, the set (P €)PVar of procedure variables.
Definition 3.1

1. Let (S €) Stat be the set statements specified by

S = zr:=5|5;5;|if bthen S else S, fi | P.

i

2. The set (G €) GStat of guarded statements is given by
G = z:=s|G1;Sg|ifbthenG1 elseGgﬁ

3. The set (D €) Decl of declarations consists of n-tuples D= P, < G,,...,P, < G,.

4. The set (R €) Prog of programs consists of tuples R= D | S.

We use simultaneous recursion rather than using so-called y-constructs. In procedure
declarations we only use guarded statements. The set of guarded statements is a
subset of the set of statements. Declarations with unguarded statements can be made
guarded with skip-statements. For the input/output behaviour this does not make any
difference.

Now, a transition is a fourtuple in Prog x T x (Progu {E}) x X, written in the notation
(R,0) — (R',0")

or
(R,0) — (E,0').

The transition system which generates the transition relation is given in
Axioms:
(z :=s,0) — (E,0[z:= V(s)(o)])
Rules:
(D | $1,9) ~ (D | S1,0")
(D| $1;5,0) — (D | §1;5,0")
(D | if b then S, else S fi,0) — (D | §7,0") if W(b)(o) = tt

(D | if b then S else S, fi,0) — (D | 5§,0") if W(b)(o)=F
(«-cxPeS,... | Po)y—(...,P <= 5,... | §,0)

(D I 5170) - (E,O")

(D] $1;8,0) = (D | S,0")

(D | if b then $; else S fi,0) — (£,0’) if W(b)(a) = tt
(D | if b then S else S; fi,0) — (E,0') if W(b)(o)=ff
(....,.P«<S,,...| Po)— (E,o")

We next define the operational semantics.
Definition 3.2 The mapping O : Prog — £, — X, is given by
1L o=1

O(R)(o)=< o' (R,0)—*(E,0)
1 otherwise

314

We introduce the notion of environment which is used to store and retrieve meanings
of procedure variables. Let I' = PVar — %, — %, be the set of environments, and let
v € . We write 7[P; := ¢;] for a variant of v which is like y but with v(P;) = ¢;. Weare
now in a position to define the denotational semantics for R € Prog. The denotational
semantics D: I — Stat — ¥, — ¥, is given in

Definition 3.3

1 o= 1
1. D(y)(z := s) = Ao { o[z := V(s)(a)] otherwise

2. D(7)(51; S2) = D(7)(52) o D(7)(51)

1 o=1
3. D(7)(if b then S, else S, fi) = Aa.{ D(v)(S1)(0) W(b)(o)= t
D()(S2)(o) W(b)(o) = ff

4. D(7)(P) = 7(P)
We define a metric d on I’ by putting
d(71,72) = sup{d(71(P),72(P)) : P € PVar}.

This metric turns T into a complete metric space.

Choose an arbitrary declaration D = P, « Gy,..., P, < Gy. Let the mapping ¥ : T —
T be given by

¥(7) = 1[Pi := D(7)(Gi)).
We have the following lemma.
Lemma 3.4 The sequence (¥I(AP.)o.1)); is a Cauchy sequence.
Proof Follows from
Vi[¥(APXo. L)(P)o) =o' Ao’ # L= W (APXo.L)(P)(o) = 0'].
[}

Theorem 3.5 Let vp = im0 $¥(AP.Ac.L). Then ~p is the fixed point of ¥ with the least
distance to AP.)o. 1.

The mapping M : Prog — £, — X, is given as follows:
M(D | §) = D(1p)($)-

We turn to the equivalence O = M. The mapping & : (Prog — (2. — 1)) — (Prog —
(EJ_ Ed E_L)) isgivenin

315

L =1
Definition 3.6 &(F)(R)(o) = { o ErR,a) - (E,d")
F(R')(o") (R,0)— (R',d’)

An important step in the proof that © = M holds on Prog is the following lemma:

Lemma 3.7

1 ®(M)(D | 51;52) = M(D | $2)0 #(M)(D | 51)
2. (M)(...,P<G,... | P)=®M)...,P<G,... | G)
1 o= 1
3. ®(M)(D | if b then S, else S, fi) = Aa.{ B(M)(D | S1)(0) W(b)(o) =t
(M)(D | S2)(0) W(b)(o) = ff
We have the following
Corollary 3.8 M is a fixed point of .
Proof: We show for any D € Decl and S € Stat
(*) @M)D | 5)= M(D | 5)
The proof proceeds in two stages; first we show (*) for G € GStat(C Stat) and next for

S € Stat. We prove the result for G € GStat(S € Stat) by induction on the complexity
of the statement G(S).

1. We only treat the cases G = G1;S and G = if b then G, else G fi.
G=Gy,;S:

Y(M)(D | G1; §) = [lemma]
M(D | §)o ®(M)(D | Gy) = [induction]
M(D | S)o M(D | Gy) =
M(D | Gy; 5).
G =if b then G, else G, fi:

®(M)(D | if b then G, else G; fi) = [lemma]

1 o=1
,\a.{ S(M)(D | G1)(e) W(b)(e)=tt = [induction]
S(M)(D | G2)(0) W(b)(o)=f

316

1 o=1
Ao. M(D| Gy)o) Wh)o)=tt =
M(D | Gr)(a) W(b)(o)=F

M(D | if b then G; else G, fi).

2. We only treat the case
S=P:

S(M)(...,P < G,... | P)=[lemma]
d(M)(...,P«<G,... | G) =[G € GStat]
M(...,P < G,... | G) = [induction]

M(...,P«<G,... | P).

Theorem 3.9 (R,0) =" (E,d"y & M(R)(o)=d"Ad" # L.
Proof:

=

Assume (R,q) - (E, d’). Using the corollary we have

M=dM)=..-=¢"(M) =
1 o=1

Aol o (R,0) =% (E,0') Ak <n
D(R')(0o') (R,0)—"(E,d").

Hence M(S)(g) = o'.

<: Let, for eack k, 7x = ¥¥(AP.Aa.1). Note that limy_.o 7x = vp. We prove for all
k,S,0,0'

o =Du)S)o)Ad' # L= (D] S,a)—"(E,d).
We prove it by induction on the tuples made up of k and the complexity of the statement

S. As the ordering on such tuples we take the lexicographical ordering. We only treat
the cases S = §5;; S, and S = P.

S =85;1;5:
D(1)(51; 52) =

D(7k)(S2) o D(7k)(51)-

317

Because
o' = D(n)(51;52) (o) Ao’ # L
we can find a o” such that
0" =D(n)(S1)(o) A" £ L
o' = D(n)(S2)(e") Ao’ # L.
By induction
(D | $1,0) =" (E,0")
(D | $2,0") —* (E,0')
and hence
(D | $1;52,0") =" (E,d").
S = P: Let G the body of P.
D(u)(P) =
W(P) =
D(71k,)(G)-
Hence by induction
(D|G,0)—" (E,0)
and this implies

(D | Pyo)—* (E,d".

4 Conclusion

We hope that this paper shows that we also can handle the input/output semantics
of sequential languages with the help of metric topology. In this case, the difference
between using order theory or metric topology is not very big. The proofs are in both
cases very similar.

318

References

(dB80]

(dBMS88]

[dBZ82]

[KR88]

J.W. de Bakker. Mathematical Theory of Program Correctness. Prentice/Hall,
1980.

J.W. de Bakker and J.-J.Ch. Meyer. Metric semantics for concurrency.
BIT, 28:504-529, 1988.

J.W. de Bakker and J.I. Zucker. Processes and the denotational semantics
of concurrency. Inform. and Control, 54:70-120, 1982.

J.N. Kok and J.J.M.M. Rutten. Contractions in comparing concurrency
semantics. In T. Lepistd and A. Salomaa, editors, Proc. 15th Interna-
tional Colloquium Automata, Languages and Programming, pages 317-332,
Springer Verlag, 1988. Lecture Notes in Computer Science 317.

